The restricted Burnside problem for Moufang loops
نویسندگان
چکیده
Abstract We prove that for positive integers $m \geq 1, n 1$ and a prime number $p \neq 2,3$ there are finitely many finite m -generated Moufang loops of exponent $p^n$ .
منابع مشابه
The Restricted Burnside Problem
In 1902 William Burnside [5] wrote 'A still undecided point in the theory of discontinuous groups is whether the order of a group may be not finite, while the order of every operation it contains is finite'. In modern terminology the most general form of the problem is 'can a finitely generated group be infinite while every element in the group has finite order?'. This question was answered in ...
متن کاملOn the Restricted Burnside Problem
After many unsuccessful attempts to obtain a proof in the late 30s-early 40s the following weaker version of The Burnside Problem was studied: Is it true that there are only finitely many 7??-generated finite groups of exponent nl In other words the question is whether there exists a universal finite m-generated group of exponent n having all other finite m-generated groups of exponent n as hom...
متن کاملOn Zel'manov's solution of the restricted Burnside problem
We give an outline of the main steps in Zel'manov's solution of the restricted Burnside problem. We show how one of the key steps can be simpli®ed by using the multilinear identities satis®ed by the associated Lie rings of groups of prime-power exponent.
متن کاملOn Moufang A-loops
In a series of papers from the 1940’s and 1950’s, R.H. Bruck and L.J. Paige developed a provocative line of research detailing the similarities between two important classes of loops: the diassociative A-loops and the Moufang loops ([1]). Though they did not publish any classification theorems, in 1958, Bruck’s colleague, J.M. Osborn, managed to show that diassociative, commutative A-loops are ...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical proceedings of the Cambridge Philosophical Society
سال: 2021
ISSN: ['0305-0041', '1469-8064']
DOI: https://doi.org/10.1017/s0305004121000517